高通量筛选技术在药物发现中的应用进展

方莲花, 王月华, 杜冠华

中国药学杂志 ›› 2023, Vol. 58 ›› Issue (4) : 289-295.

PDF(943 KB)
PDF(943 KB)
中国药学杂志 ›› 2023, Vol. 58 ›› Issue (4) : 289-295. DOI: 10.11669/cpj.2023.04.001
庆祝《中国药学杂志》创刊70周年

高通量筛选技术在药物发现中的应用进展

  • 方莲花a,b, 王月华b, 杜冠华a*
作者信息 +

Application Progress of High Throughput Screening Technology in Drug Discovery

  • FANG Lian-huaa,b, WANG Yue-huab, DU Guan-huaa*
Author information +
文章历史 +

摘要

药物筛选是新药研发的重要手段和基础环节,高通量筛选(high throughput screening,HTS)是一种为寻找新药先导物而对大量样品进行药理活性评价分析的技术手段。HTS技术体系综合应用药理学技术、分子生物学技术、细胞生物学技术、计算机技术、管理技术以及自动化控制技术等多种技术,实现了药物筛选的快速、高效、微量化、自动化和规模化。经过几十年的实践和发展,HTS已成为新药研究和开发的重要技术方法,在新药研发中发挥了重要作用。本文将对HTS技术在药物研发中的应用进展进行综述,为新药发现和研究提供参考。

Abstract

Drug screening is an important technology and basic link in the research and development of new drug. High throughput screening (HTS) is a technology to evaluate and analyze the pharmacological activity of a large number of samples in order to find lead compounds of new drug. The HTS technology system comprehensively applies various biomedical technologies such as pharmacology technology, molecular biology technology, cell biology technology, computer technology, management technology, automatic control technology to achieve rapid, efficient, microminiaturization, automation and large-scale drug screening. After decades of practice and development, HTS has become an important technical method in the research and development of new drugs and has played an important role in the research and development of new drugs. This article will review the application progress of HTS technology in drug discovery and research to provide reference for new drug research and development.

关键词

药物筛选 / 高通量筛选 / 药物发现 / 药物靶点 / 筛选模型 / 先导化合物

Key words

drug screening / high throughput screening / drug discovery / drug target / screening model / lead compound

引用本文

导出引用
方莲花, 王月华, 杜冠华. 高通量筛选技术在药物发现中的应用进展[J]. 中国药学杂志, 2023, 58(4): 289-295 https://doi.org/10.11669/cpj.2023.04.001
FANG Lian-hua, WANG Yue-hua, DU Guan-hua. Application Progress of High Throughput Screening Technology in Drug Discovery[J]. Chinese Pharmaceutical Journal, 2023, 58(4): 289-295 https://doi.org/10.11669/cpj.2023.04.001
中图分类号: R917   

参考文献

[1] DU G H, HU J J, XIA L J, et al. Development and current situation of drug screening[J]. Acta Pharm Sin (药学学报), 1998, 33(11): 876-879.
[2] DU G H. High-Throughput Screening(高通量筛选)[M]. Beijing: Chemical Industry Press Co., Ltd, 2002.
[3] ZHANG F C, SUN Z Y, LIAO L P, et al. Discovery of novel CBP bromodomain inhibitors through TR-FRET-based high-throughput screening [J]. Acta Pharm Sin B(药学学报 英文版), 2020, 41(2): 286-292.
[4] SU X W, ZHANG H L, ZHANG N, et al. Screening small molecular inhibitors of STAT3 based on surface plasmon resonance technology[J]. J Pharm Pract (药学实践杂志), 2021, 39(6): 515-519, 537.
[5] WENG L D, SPOONAMORE J E. Droplet microfluidics enabled high-throughput screening for protein engineering[J]. Micromachines (Basel), 2019, 10(11): 734.
[6] BECKER S, SCHMOLDT H U, ADMS T M, et al. Ultra-high-throughput screening based on cell-surface display and fluorescence-activated cell sorting for the identification of novel biocatalysts[J]. Curr Opin Biotechnol, 2004, 15(4): 323-329.
[7] LU T, TU R, YUAN H L, et al. Development and application of a droplet-based microfluidic high-throughput screening of Pichia pastoris[J]. Chin J Biotechnol (生物工程学报), 2019, 35(7): 1317-1325.
[8] CHIU F W Y, STAVRAKIS S. High-throughput droplet-based microfluidics for directed evolution of enzymes[J]. Electrophoresis, 2019, 40(21): 2860-2872.
[9] YANG J H, SU X L, ZHU L L. Advances of high-throughput screening system in reengineering of biological entities[J]. Chin J Biotechnol (生物工程学报), 2021, 37(7): 2197-2210.
[10] HUANG J X, HU J J, LIU A L, et al. Computer processing of activity data of high throughput drug screening[J]. Chin Pharm J (中国药学杂志), 2000, 35(3): 145-147.
[11] DU G H. Research in innovation of new drugs and high throughput screening technology[J]. Chin J New Drugs (中国新药杂志), 2001, 10(8): 561-565.
[12] DU G H. Experimental Pharmacology (2nd Edition)(实验药理学) [M]. Beijing: Higher Education Press, 2021.
[13] LLOYD M D. High-Throughput Screening for the discovery of enzyme inhibitors [J]. J Med Chem, 2020, 63(19): 10742-10772.
[14] DUAN G F, XU B, XIA YUAN, et al. High-throughput screening technologies for ion channel drug discovery[J]. J Chin Pharm Sci, 2021, 30 (10), 785-793.
[15] DAY C R, CHEN H, COULON A, et al. High-throughput single-molecule screen for small-molecule perturbation of splicing and transcription kinetics[J]. Methods, 2016, 96:59-68. Doi: 10.1016/j.ymeth.2015.11.025.
[16] ZHU L P, WANG X R. Advances in the application of high-throughput screening techniques based on cell models in drug development[J]. Chin J Mod Appl Pharm (中国现代应用药学), 2021, 38(23): 3050-3056.
[17] LI S Z, XIA M H. Review of high-content screening applications in toxicology[J]. Arch Toxicol, 2019, 93(12): 3387-3396.
[18] GAO T, DING G S, SU P P, et al. Advances in drug screening models[J]. Strait Pharm J (海峡药学), 2021, 33(7): 1-5.
[19] USAJ M M, STYLES E B, VERSTER A J, et al. High-content screening for quantitative cell biology[J]. Trends Cell Biol, 2016, 26(8): 598-611.
[20] GUO P, CHEN L P, CHEN W. Advances in high content screening applications in toxicology research[J]. Chin Prev Med (中华预防医学杂志), 2022, 56(1): 15-19.
[21] DONATO M T, GOMEZ-LECHON M J, TOLOSA L. Using high-content screening technology for studying drug-induced hepatotoxicity in preclinical studies[J]. Expert Opin Drug Discov, 2017, 12(2): 201-211.
[22] WANG Y H, DU G H. Modern phenotypic drug screening, a feasible strategy for drug discovery[J]. Chin J New Drugs (中国新药杂志), 2016, 25(4): 395-404.
[23] KRANIAK J M, CHALASANI A, WALLACE M R, et al. Development of 3D culture models of plexiform neurofibroma and initial application for phenotypic characterization and drug screening[J]. Exp Neurol, 2018, 299(Pt B): 289-298.
[24] COOPER D J, ZUNNINO G, BIXBY J L, et al. Phenotypic screening with primary neurons to identify drug targets for regeneration and degeneration[J]. Mol Cell Neurosci, 2017, 80: 161-169. Doi: 10.1016/j.mcn.2016.07.001.
[25] MING Y, HASAN M F, TATIC-LUCIC S, et al. Micro three-dimensional neuronal cultures generate developing cortex-like activity patterns[J]. Front Neurosci, 2020, 14: 563905. Doi: 10.3389/fnins.2020.563905.
[26] WANG Y H, HE X L, YANG H G, et al. Effects of the active components of Chinese herbal medicine Xiaoxuming decoction on memory behavior and brain injury in rats with chronic cerebral ischemia[J]. J Chin Integr Med (中西医结合学报), 2012, 10(1): 91-99.
[27] WANG Y H, QIN H L, HE X L, et al. Activity evaluation of effective compounds and preparation effective components groups of Xiaoxuming decoction for anti-cerebral ischemic[J]. China J Chin Mater Med (中国中药杂志), 2011, 36(15):2140-2144.
[28] WANG Y H, HE X L, YANG H G, et al. Effects of effective components groups of Xiaoxuming decoction on MCAO rats[J]. Chin Pharm J (中国药学杂志), 2012, 47(3):194-198.
[29] CHENG X, YANG Y L, LI W H, et al. Xiao-Xu-Ming decoction extracts promotes mitochondrial biogenesis and improves neurobehavioral deficits in cerebral ischemia/reperfusion rats[J]. Pharmacol Res - Mod Chin Med, 2022, 5: 100192.
[30] YANG Y L, ZHANG S S, LIU M, et al. Network pharmacological analysis of Xiao-Xu-Ming decoction against ischemic stroke and verification of its mechanism of anti-inflammation and neurovascular protection in vivo[J]. J Chin Pharm Sci, 2022, 31 (5): 343-359.
[31] YANG Y L, ZHANG S S, LIU M, et al. Xiao-Xu-Ming decoction extract ameliorates brain injury in rats with thrombotic focal ischemic stroke and understanding possible therapeutic targets using proteomics[J]. J Chin Pharm Sci, 2021, 30 (6): 468-483.
[32] WANG Y M, GE Y L, ZHAO L N, et al. Recent progress in understanding the mechanism of neuroprotective effect of pinocembrin[J]. Chin Pharm J (中国药学杂志), 2018, 53(4): 245-248.
[33] LAN X, HAN X N, LI Q, et al. Pinocembrin protects hemorrhagic brain primarily by inhibiting toll-like receptor 4 and reducing M1 phenotype microglia[J]. Brain Behav Immun, 2017, 61: 326-339.
[34] LIU R, LI J Z, SON J K, et al. Pinocembrin improves cognition and protects the neurovascular unit in Alzheimer related deficits[J]. Neurobiol Aging, 2014, 35(6): 1275-1285.
[35] ELBATREEK M H, MAHDI I, OUCHARI W, et al. Current advances on the therapeutic potential of pinocembrin: An updated review[J]. Biomed Pharmacother, 2023,157:114032.
[36] ZHANG X, ZHANG W, DU L D, et al. Advances in anti-Parkinson′s disease drugs and their related pharmacological targets[J]. J Int Pharm Res (国际药学研究杂志), 2016, 43(1): 87-96.
[37] YANG Y L, ZHANG X, ZHANG W, et al. Inhibitory effect of baicalein on mice tremor induced by oxotremorine and mechanisms[J]. Chin J New Drugs (中国新药杂志), 2018, 27(8): 914-920.
[38] SONG Q X, PENG S X, Zhu X S. Baicalein protects against MPP+/MPTP-induced neurotoxicity by ameliorating oxidative stress in SH-SY5Y cells and mouse model of Parkinson′s disease[J]. Neurotoxicology, 2021, 87: 188-194.
[39] KONG D W, DU L D, JIANG N, et al. The research advance on subtypes and relevant therapy of Parkinson′s disease[J]. Acta Pharm Sin (药学学报), 2022, 57(8): 2245-2252.
[40] CHEN X. Academician Zhang Boli: Chinese medicine has a place in the layout of national key laboratories [J]. Tianjin J Tradit Chin Med (天津中医药), 2020, 37(6): 602.
[41] XUE X J, TIAN X X, HOU D D. Components of traditional Chinese medicine enter the national key laboratory, layout Tianjin, and build a Chinese medicine technology research and development highland in Beijing, Tianjin and Hebei[J]. Talents Seeking (求贤), 2021, (12): 18-19.
[42] LI X H, DU G H. Drug Discovery and Evaluation (2ndEdition)(药物发现与评价) [M]. Beijing: People′s Health Publishing House, 2022.

基金

国家自然科学基金项目资助(82141204);中国医学科学院医学与健康科技创新工程项目资助(2022-I2M-JB-010, 2021-I2M-1-005)
PDF(943 KB)

Accesses

Citation

Detail

段落导航
相关文章

/